上海 江蘇 浙江 安徽 PCB培訓(xùn) 郵箱登陸 聯(lián)系我們
緯亞聯(lián)系電話:0512-57933566
PCB噴墨打印技術(shù)用高分散的納米銀研制服務(wù)

聯(lián)系我們

昆山緯亞PCB生產(chǎn)基地聯(lián)系方式
昆山緯亞智能科技有限公司

公司地址:昆山市周市鎮(zhèn)宋家港路259號(hào)
公司電話Tel:0512-50139595
電子郵件Email: steven@pcbvia.com

首頁  新聞動(dòng)態(tài)  行業(yè)新聞PCB噴墨打印技術(shù)用高分散的納米銀研制

PCB噴墨打印技術(shù)用高分散的納米銀研制

發(fā)布時(shí)間:2016-06-24 08:18:29 分類:行業(yè)新聞

摘  要:以硝酸銀為原料,PAAS(聚丙烯酸鈉)為分散劑,硼氫化鉀為還原劑,采用還原法成功地制備納米銀。通過X-射線衍射分析儀(XRD)和透射電子顯微鏡(TEM)對(duì)納米銀進(jìn)行了表征,結(jié)果顯示,在水溶劑作用下,得到的納米銀為球形、單晶、粒徑為30~50 nm,無其他的氧化物存在。探討了不同還原劑的量和分散劑對(duì)合成納米銀的影響,表明在還原劑KBH4和分散劑PAAS作用下,制備的納米銀粒徑大小均一,無團(tuán)聚。制備的高分散納米銀為PCB噴墨打印的應(yīng)用奠定了基礎(chǔ)。
關(guān)鍵詞:噴墨打印技術(shù),納米銀,還原法,分散劑,單晶

PCB ink-jet printing technology Development of Highly Monodispersed Silver Nanoparticles
Liubinyun, Zhangnianchun, Wanghengyi, Wushixian
Guangdong Toneset Science & Technology Co., Ltd, Guangzhou 510208, China

Abstract: Potassium borohydride as reducing agent, silver nitrate as oxidant, add the sodium polyacrylate as dispersant, silver nanoparticles were successfully prepared by reduction method. The XRD and TEM of characterization of nano-silver, the results showed that single crystal, spherical, diameter of 30~50 nm nano-silver was obtained with water as the solvent, and no other oxide exist. We studied effect different reducing agent and dispersant on the synthesis of nano-silver. It was indicated that the silver nanoparticles was dispersion and uniformity with potassium borohydride as reducing agent and the sodium polyacrylate as dispersant. The preparation of highly dispersed nano-silver laid the foundation for PCB inkjet technology applications 
Key words:Ink-jet printing technology; Silver nanoparticles; Reduction method;Dispersant;Single crystal
  人類社會(huì)已進(jìn)入21世紀(jì),計(jì)算機(jī)、通訊及其它電子產(chǎn)品對(duì)印制電路板(PCB)制作提出了更高的要求,即高性能、高可靠性、多功能、小型化、環(huán)保及低成本。常規(guī)的PCB是采用蝕刻法工藝來制造圖形,這種蝕刻法工藝存在材料消耗高、生產(chǎn)工序多、廢液排放大、環(huán)保壓力重等諸多缺點(diǎn)[1-2]。目前電子產(chǎn)品向輕、薄、短、小發(fā)展,要求采用高可靠的制造技術(shù),由于納米材料適應(yīng)印制電路板的發(fā)展要求,因此,其在印制電路板中的應(yīng)用倍受關(guān)注。導(dǎo)電油墨作為印制電子技術(shù)中使用的關(guān)鍵電子材料,優(yōu)質(zhì)的導(dǎo)電油墨已經(jīng)成為全印制電子技術(shù)(Full Printed Electronics Technology)、無線射頻識(shí)別系統(tǒng)(RFID, Radio FrequencyIdentification)、薄膜開關(guān)等技術(shù)領(lǐng)域中的關(guān)鍵材料[3-4],其中以銀系導(dǎo)電油墨(導(dǎo)電納米銀漿類)開發(fā)熱。因其可觀的市場(chǎng)前景,引了許多家大公司投資,根據(jù)Nano Markets公司的行業(yè)分析,到2015年,導(dǎo)電銀漿的市場(chǎng)規(guī)模將達(dá)到24億美元[5-6]。從技術(shù)的發(fā)展趨勢(shì)上看,能在常溫下固化,具有良好力學(xué)性能及載流子能力的有機(jī)高分子導(dǎo)電油墨,以及環(huán)境友好的水溶性導(dǎo)電油墨,將是未來發(fā)展的方向[7]。特別是在全印制電子技術(shù)中,由于基板多為有機(jī)-無機(jī)復(fù)合材料、甚至為紙質(zhì),這些材質(zhì)不具備承受高溫固化的能力,因此,開發(fā)能夠在室溫下固化、具有良好力學(xué)性能、環(huán)境友好的導(dǎo)電油墨都將具有實(shí)用價(jià)值。
  導(dǎo)電油墨應(yīng)用于全印制電路技術(shù)的優(yōu)勢(shì)在于:減少印制板制作工序,避免了傳統(tǒng)蝕刻方法中干膜、顯影、蝕刻等一系列工序,生產(chǎn)成本降低,耗材減少,幾乎不產(chǎn)生三廢,有更高靈活性;低溫工藝,低溫固化可使油墨用在對(duì)溫度敏感的材料或無法焊接的材料上、芯片在玻璃上的組裝、芯片在柔性基板上的貼裝等[8-9]。作為導(dǎo)電油墨中重要的部分-納米材料,金屬納米材料是制備導(dǎo)電油墨的關(guān)鍵成分之一,制備納米金屬油墨的主要材料是金、銀、銅、鈀、鉑、鎳等任一種純金屬微粒及其氧化物或合金。目前,制備納米銀粉的主要方法有:檸檬酸三鈉[10]、水合肼[11]、葡萄糖[12]、乙醇[13]等。這些方法各有其特點(diǎn)。而化學(xué)法制備的銀粒子小可達(dá)幾納米,操作簡(jiǎn)單,容易控制;缺點(diǎn)是比表面積大、表面原子數(shù)多、表面能高,屬于熱力學(xué)不穩(wěn)定體系,且存在大量的表面缺陷和懸掛鍵,顆粒間極易團(tuán)聚,形成尺寸較大的團(tuán)聚體,導(dǎo)致終應(yīng)用時(shí)失去納米顆粒應(yīng)有的物性和功能,從而影響其產(chǎn)品的開發(fā)應(yīng)用。目前,內(nèi)外對(duì)納米銀的分散和穩(wěn)定性的系統(tǒng)研究鮮見報(bào)道,對(duì)光譜吸收與顆粒尺寸之間的關(guān)系研究更少。本工作的主要目的是采用化學(xué)還原法制備好的分散性和粒徑小的納米銀粒子,解決納米顆粒在工業(yè)領(lǐng)域的應(yīng)用問題。并對(duì)溶劑與分散劑進(jìn)行探討,為研究納米銀導(dǎo)電油墨應(yīng)用于全印制電路技術(shù)奠定基礎(chǔ)。

1  實(shí)驗(yàn)過程
1.1 試劑及儀器
  試劑:硝酸銀(純度≥99.0%,分析純);氨水(25 %,分析純);乙二醇(PEG 1000 ≥99.0%,分析純),聚丙烯酸鈉(PAAS,分析純)以上試劑購于廣州金華大試劑有限公司;硼氫化鉀(純度≥99.0%,分析純),抗壞血酸(純度≥99.0%,分析純),無水乙醇(純度≥99.7%,分析純)購于廣州化學(xué)試劑廠;實(shí)驗(yàn)用水為凈化的二次去離子水,電阻率≥18.2 MΩ.cm,25℃。
  儀器:JEOL-2010型透射電子顯微鏡(TEM);Zetasizer-3000HS 粒度分析儀(Malvern Instruments UK);TG16-WS型臺(tái)式高速離心機(jī)(湘儀離心機(jī)廠);KQ3200E型超聲波儀器(昆山超聲儀器有限公司);NETZSCH DSC 200PC型差示掃描量熱儀(DSC,德NETZSCH公司);T09-1S型恒溫磁力攪拌器(smtsh.cn/ target=_blank class=infotextkey>上海司樂儀器廠);BS124S型萬分之一電子天平(北京賽多利斯儀器系統(tǒng)有限公司)。

1.2 實(shí)驗(yàn)方法
1.2.1 納米銀粉的制備

  將相同量0.8 gAgNO3 分別溶于少量的水中,加入100 ml的去離子水,充分?jǐn)嚢枋蛊淙芙?,分別用不同的還原劑和分散劑:還原劑為抗壞血酸和硼氫化鉀,其濃度均為1.0×10-3 mol/L,分散劑為PAAS,加入不同的量,見表一。然后攪拌使其均勻分散于溶劑中,在常溫下反應(yīng)3 h,然后將所得到的懸濁液以10000 r/min的轉(zhuǎn)速離心分離10 min,后將所得的產(chǎn)品于65℃真空干燥箱中干燥8 h。

表1  不同條件下制備納米銀

1.2.2 納米銀粉的表征
  將干燥后的納米銀粉置于鉛板的凹槽中,用MSAL-XD2型X-射線粉末衍射儀(XRD)進(jìn)行組成、晶型分析,Kα(λ=0. 154051Å)射線,石墨單色器,管電壓40 kV,管電流20 mA,掃描速度為5 °/ min。將所制備的納米銀粉用水稀釋,經(jīng)超聲波超聲振蕩30 min,后滴在噴有無定型石墨的銅網(wǎng)上,晾干,JEOL-2010型透射電子顯微鏡(TEM,加速電壓為200 kV)和選區(qū)電子衍射(SAED)觀察粒子形貌、晶型、團(tuán)聚狀況及單個(gè)粒子的大小。取少量分散在DI水中的納米銀懸濁液,經(jīng)超聲分散數(shù)十分鐘,用Zetasizer-3000HS粒度分析儀進(jìn)行粒徑分布分析,熔化溫度的測(cè)定在DSC儀器上進(jìn)行,以氮?dú)庾鞅Wo(hù)氣,氮?dú)獾牧魉贋?0 mL/min,坩堝材質(zhì)為鋁。

2 結(jié)果與討論
2.1 X-射線衍射(XRD)檢測(cè)分析

  圖1所示為不同條件作用下所制備的納米銀粉的X-射線衍射譜。從圖中可以看出,抗壞血酸和硼氫化鉀還原制備的納米銀粉在衍射角(2θ)為38°、44°、64°、77°和81°處顯示出衍射強(qiáng)峰,這些衍射峰分別歸屬于金屬銀的(fcc)的(111)、(200)、(220)、(311)和(222)的晶面衍射。在圖1(a)-(c)中,均為銀的衍射峰,沒有其他氧化物的衍射峰出現(xiàn),因此可以確定所得產(chǎn)物均為銀。說明溶劑水中得到的為銀的純物質(zhì),可以制備純銀粉末。  

     圖1 制備的納米銀XRD分析:(a)抗壞血酸還原,(b)硼氫化鉀還原,(c)硼氫化鉀加PAAS分散劑

2.2 形貌檢測(cè)及粒徑分析
  圖2為在不同條件下制備納米銀的TEM照片,從圖2(a)中可以看出,用抗壞血酸還原制備的納米銀粒徑為25~60 nm,大小不均一,局部分散性較好。在分散劑PAAS作用下,硼氫化鉀還原制備的納米銀粒徑在20 nm左右,整體和局部分散型好,如圖2(b)。而不加入分散劑PAAS,如圖2(c),納米銀粒子整體上看分散性差,大部分粒子聚集在一起,難以分散。

  

     

  圖 2 制備納米銀的TEM分析:(a)抗壞血酸還原,(b)硼氫化鉀還原,(c)硼氫化鉀加PAAS分散劑

  圖3為納米銀粒子的粒徑分布圖,從圖3(a)可以看出,用抗壞血酸加入PAAS分散劑,粒子分布較寬,在大的粒徑范圍(100-1000 nm)之間有粒子存在,說明此方法得到的納米銀有一定的團(tuán)聚及大小不均一。在圖3(b)中,粒子呈現(xiàn)出正態(tài)分布性,大部分粒子的粒徑在30-40 nm之間,無明顯的大粒徑的銀粒子出現(xiàn)。圖3(c)表明,在10-100 nm之間有粒子存在,粒徑分布較寬,在大的粒徑范圍(50-100 nm)有粒子存在。從上面實(shí)驗(yàn)分析得出,說明分散劑PAAS有利于納米粒子的分散性,可以阻止其團(tuán)聚。

  

圖3 粒徑分布圖 (a)抗壞血酸還原,(b)硼氫化鉀還原,(c)硼氫化鉀加PAAS分散劑

  由圖XRD、TEM及粒徑分布圖得出,納米銀在還原劑抗壞血酸和硼氫化鉀作用下不易被氧化,得到的是純物質(zhì)納米銀,但是在還原劑硼氫化鉀和分散劑作用下,納米銀呈現(xiàn)出好的分散性和均一性。這是因?yàn)榧{米銀顆粒由于表面積大,活性高,在空氣或水中極易團(tuán)聚,所以與沒有加分散劑的體系相比,當(dāng)銀離子被還原時(shí),硼氫化鉀還原和PAAS分散劑可以明顯減少納米銀顆粒的團(tuán)聚。

2.3 納米銀的EDX和SAED分析
  由加入還原劑硼氫化鉀和分散劑PAAS得到的納米銀樣品進(jìn)行EDX元素和SAED分析結(jié)果,分別如圖4 (a)和(b)所示。從圖4 (a)看出,得到的為純銀,無其他雜元素存在;圖4(b)的SAED分析表明,得到的納米銀是單晶,再次證明無其他氧化物或者其他晶態(tài)物質(zhì)存在。

          

圖4(a)納米銀能譜分析,(b)納米銀選區(qū)電子衍射分析

  通過加入適當(dāng)?shù)姆稚┑玫郊{米銀粒子具有好的分散性和均一性,這是因?yàn)樵诰郾┧徕c中疏水基團(tuán)烷基長(zhǎng)鏈伸向四周,將其表面包圍,降低其表面活性,阻止銀簇間的相互吸附作用(帶有同種電荷),利用空間位阻效應(yīng)限制納米銀粒徑的增長(zhǎng),這樣既有空間阻礙效益又有電荷排斥效益,以進(jìn)一步阻止納米金屬的氧化。

2.4 納米銀的熔點(diǎn)分析
  圖5是納米銀(a,b和c)的DSC曲線,升溫速率是20℃/min,整個(gè)過程都是在50~350℃之間進(jìn)行的,圖5(a),用抗壞血酸還原制備的納米銀平均粒徑在40~50 nm 的銀的熔點(diǎn)是218℃,而用硼氫化鉀還原制備的納米銀粒徑在20-30 nm,其熔點(diǎn)是137℃,如圖5(b);但是有團(tuán)聚的納米銀,當(dāng)粒徑超出100 nm,其銀的熔點(diǎn)為170℃,如圖5(c)。納米金屬粒子的熔化是一個(gè)由亞穩(wěn)態(tài)向穩(wěn)態(tài)轉(zhuǎn)變的過程。納米銀內(nèi)部結(jié)晶很好,但是表面原子和體內(nèi)的原子周圍情況不同,表面原子處于不穩(wěn)定狀態(tài),為了使系統(tǒng)的能量降到低,表面原子將發(fā)生馳豫和結(jié)構(gòu)重排[14]。由于納米顆粒會(huì)軟團(tuán)聚在一起,原來的自由表面變成材料的界面,但并不能改變其能量狀態(tài),在適當(dāng)?shù)臏囟群蜕郎厮俾氏驴梢约ぐl(fā)這一轉(zhuǎn)變[15]。

  


  圖 5 納米銀粒子的DSC曲線:(a)抗壞血酸還原,(b)硼氫化鉀還原,(c)硼氫化鉀加PAAS分散劑

3 結(jié)論
  (1) 以KBH4為還原劑、AgNO3為前驅(qū)體、PAAS為表面活性劑,成功地制得了平均粒徑分布為30~40 nm的金屬納米銀粒子,其融化點(diǎn)在145℃。
  (2) 用抗壞血酸還原制備的納米銀粒子大小不均一,粒徑分布較寬,平均粒徑在50 nm左右,其融化點(diǎn)在170℃。
  (3) 通過用不同的還原劑和加入適當(dāng)?shù)姆稚河门饸浠涀鲞€原劑,其得到的粒徑小,粒徑大小均一;在分散劑PAAS的條件下,納米銀呈現(xiàn)出好的分散性,無團(tuán)聚現(xiàn)象。

參考文獻(xiàn)
[1] 林金堵. 噴墨打印技術(shù)在PCB中的應(yīng)用前景[J]. 印制電路信息, 2008, 4: 8-13.
[2] 楊振. 一種面向PCB的全印制電子技術(shù)[J]. 印制電路信息, 2008, 9: 9-12.
[3] 吳松山.薄膜開關(guān)導(dǎo)電油墨及其應(yīng)用(一)[J]. 絲網(wǎng)印刷,1996,(1):30-36.
[4] 王振寧.噴墨印刷技術(shù)在印刷電路板中的應(yīng)用[J]. 噴墨空間, 2009, 8: 56-58.
[5] Lewis H J, Ryan A. Using Electrically Conductive Inks and Adhesives as a Means to Satisfy European PCB Manufacturing Directives[J]. Journal of Adhesion Science and Technology, 2008, 22(8/9): 893-913.
[6] 林金堵. 噴墨打印技術(shù)在PCB中的應(yīng)用[J]. 印制電路信息, 2008, (7): 9-13.
[7] 甘衛(wèi)平, 張海旺, 黃波, 等. 低溫固化型銀基漿料電性能的研究[J].電子元件與材料, 2009, 28(4): 54-56.
[8] Park B K, Kim D, Jeong S, et al. A Direct Writing of Copper Conductive Patterns by Ink-Jet Printing [J].Thin Solid Films, 2007, 515 (19): 7706-7711.
[9] Rae A, Fritzingger D H. Creating Metal and Nonmetal Nanosystems Using Conductive Jet Table Inks[J]. Solid State Technology, 2006, 49 (4): 53-55.
[10] Ventura M G, Parola A J, Matos P A. Influence of Heat Treatment on the Colour of Au and Ag Glasses Produced by the Sol-Gel Pathway[J]. Journal of Non-Crystal line Solids, 2011, 357(4): 1342-1349.
[11] 蘇婷, 宋永輝, 楊勇,等. SDBS/PVP溶液中片狀銀制備及紫外可見光譜分析研究[J]. 稀有金屬, 2011, 35(2) : 258-262.
[12] 秀菊, 趙成如. 納米銀溶膠的研制[J]. 中醫(yī)療器械信息, 2009, 15(5):1-5.
[13] Mahltig B, Gutmann M, Reibold M. Synthesis of Ag And Ag/SiO2 Sols by   Solvo-Thermal Method and their Bactericidal Activity[J]. Journal of Sol-gel Science and Technology, 2009, 51(2):204-214.
[14]劉偉, 鄧曉燕, 張志焜. 納米銅粒子的熱穩(wěn)定性研究[J]. 理化檢驗(yàn)(物理分冊(cè))雜志, 2004, 40(2):64-67.
[15] 盧柯, 生紅衛(wèi), 金朝暉. 晶體的熔化和過熱[J]. 材料研究學(xué)報(bào),1997,11 (6):658-665.

來源:PCB噴墨打印技術(shù)用高分散的納米銀研制

瀏覽"PCB噴墨打印技術(shù)用高分散的納米銀研制"的人還關(guān)注了

版權(quán)所有:昆山緯亞電子科技有限公司      技術(shù)支持:李麟